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G. Kirchhoff demonstrated in 1868 that the propagation of sound waves in a pipe is
dispersive because of viscothermal losses at the pipe walls. His solution for a wide pipe
shows that the inviscid wavenumber, k=v/c0, where v is the radian frequency and c0 is
the speed of sound, is modified to kK0, where the propagation constant K0 is given by [1]

K0 =1+((1+ i)/s)(1+ (g−1)/s)/z2. (1)

Here g is the ratio of specific heat coefficients, s2 = mcp /k is the Prandtl number,
s= azr0v/m is the shear wavenumber, m is the shear viscosity coefficient, k is the thermal
conductivity, cp is the specific heat coefficient at constant pressure, r0 is the ambient density,
a is the pipe radius and i denotes the unit imaginary number, exp (−ivt) time dependence
being assumed for all the fluctuating quantities.

Kirchhoff’s wide pipe solution is valid for a homogeneous medium in the absence of
mean flow. A one-dimensional ad hoc extension of the Kirchhoff solution to the
viscothermal acoustic wave motion in a pipe carrying a uniform mean flow has been
described by Davies [2]. This indicates that, in the presence of a superimposed uniform
mean flow, the propagation constant for the wave motion in the direction of the mean flow,
K+ say, is different from the propagation constant for the wave motion in the opposite
direction, K− say, and these are given by, respectively,

K+ =K0/(1+M), K− =−K0/(1−M). (2a, b)

Here M denotes the Mach number of the mean flow.
An alternative solution to the problem of viscothermal acoustic wave motion in a

homogeneous wide pipe carrying a superimposed uniform mean flow has been indicated
in reference [3]. This is obtained by asymptotic expansion, for large shear wavenumbers
and small mean flow Mach numbers, of the solution of convective axisymmetric acoustic
equations simplified in the manner of the Zwikker and Kosten theory, which is known to
represent the full Kirchhoff solution accurately for large shear wavenumbers [1]. In this
asymptotic theory, the propagation constants are given by

K+ =K0/(1+MK0), K− =−K0/(1−MK0), (3a, b)

which differ from the expressions predicted by the one dimensional theory, equations (2a)
and (2b), by the factor K0 in the denominator. The general eigenequation for these
wavenumbers is [3]

(K/(1−KM))2 =−(J0(ba)/J2(ba))[g+(g−1)J2(sba)/J0(sba)], (4)

where ba= szi(1−KM) and Jn ( · ) denotes a Bessel function of order n. The asymptotic
expansion of equation (4) is effected by J2(z)/J0(z)1−1+i2/z, which is valid if >z>�4.
But, for large s and small M, say, MQ 0·3, K1 3 1 and ba1 (1+ i)s/z2 and the
condition >z>�4 can be expressed as ss�4 or, say sq 40. Thus, for large s, equation
(4) yields equations (3a) and (3b) where K0 is given by,
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K0 =z1+ ((1+ i)/s)(1+ (g−1)/s)z2, (5)

which is accurately represented by equation (1) for sq 40.
In the context of this asymptotic theory, the acoustic pressure distribution along the pipe

is given by

p(x)= p+(x)+ p−(x), (6)

where x is the pipe axis and

p+(x)= p+(0) exp(ikK+x), p−(x)= p−(0) exp(ikK−x) (7a, b)

in which K+ and K− are given by equations (3a) and (3b) and the superscripts ‘‘+’’ and
‘‘−’’ refer, as usual, to the waves travelling in +x and −x directions, respectively.
Equation (6) also holds in the one dimensional theory of reference [2] with K+ and K−

given by equations (2a) and (2b). Although the pressure distribution along the pipe is
one-dimensional in the present asymptotic theory, the axial component of acoustic
velocity, v, and the acoustic density, r, are functions of axial and radial co-ordinates. It
has been shown in reference [3] that v and r can be expressed as

r0c0v(x, r)= h+(r)p+(x)+ h−(r)p−(x), (8)

c2
0r(x, r)= g+(r)p+(x)+ g−(r)p−(x), (9)

where h+(r), h−(r), g+(r) and g−(r) are functions of the radial coordinate, r. For relatively
large shear wavenumbers, the radial distribution of these functions is fairly uniform across
the cross-section, except in the very close vicinity of the pipe wall. Therefore, for most
practical purposes, equations (8) and (9) can be implemented for a wide pipe in the
cross-sectionally averaged forms

r0c0vm (x)= h+
m p+(x)+ h−

m p−(x), c2
0rm (x)= g+

m p+(x)+ g−
m p−(x), (10, 11)

where the subscript m denotes a cross-sectionally averaged value and, from reference [3],

h+
m =−[K+/(1−K+M)]J2(b+a)/J0(b+a), (12a)

h−
m =−[K−/(1−K−M)]J2(b−a)/J0(b−a), (12b)

g+
m =1+[2(g−1)/sb+a]J1(sb+a)/J0(sb+a), (13a)

g−
m =1+[2(g−1)/sb−a]J1(sb−a)/J0(sb−a), (13b)

in which

b+a=(1+ i)s/z2(1+K0M), b−a=(1+ i)s/z2(1−K0M). (14a, b)

The above described asymptotic expansion can be applied to these expressions by noting
that J1(z)/J0(z)1 i+1/2z. Thus, the asymptotic expressions for h+

m , h−
m , g+

m and g−
m are

obtained as

h+
m 1K0(1− ((1+ i)/s)z2(1+K0M)), (15a)

h−
m 1K0(−1+((1+ i)/s)z2(1−K0M)). (15b)

g+
m 1 1+ ((1+ i)/s)((g−1)/s)z2(1+K0M), (16a)

g−
m 1 1+ ((1+ i)/s)((g−1)/s)z2(1−K0M). (16b)

Equation (6) with equations (3a) and (3b), and equations (10) and (11) with equations
(15a), (15b), (16a) and (16b) constitute a pseudo-plane-wave theory for viscothermal wave
propagation in a wide pipe. Other acoustic quantities can be obtained by using the relevant
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acoustic state equations. For example, the cross-sectionally averaged temperature and
entropy fluctuations, Tm and sm, can be determined from, respectively,

Tm /T0 = p/p0 − rm /r0, sm /cv = p/p0 − grm /r0, (17, 18)

where T0 is the ambient temperature, p0 is the ambient pressure and cv is the specific heat
coefficient at constant volume.

It may be of interest to compare equations (10) and (11) of the present
pseudo-plane-wave theory with the corresponding relations of the one dimensional ad hoc
theory described in reference [2]. In the latter theory, the isentropic relationship r= p/c2

0

and the inviscid momentum equation r0(−ivv+ v0 1v/1x)+ 1p/1x=0 are assumed to be
valid. Under these assumptions, equation (10) holds with equations (15a) and (15b)
replaced by

h+
m =K0/[1+M(1−K0)], h−

m =K0/[−1+M(1−K0)], (19a, b)

respectively, and equation (11) holds with equations (16a) and (16b) replaced by,

g+
m = g−

m =1. (20)

The present theory can be used in the prediction and measurement of acoustic wave
transmission in wide pipes. In most practical low Mach number wide pipe applications,
the shear wavenumber, s, which is also called the Stokes number, will be large enough to
satisfy the conditions for the use of this asymptotic theory.
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